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SLR Assessment II:  Precision/Inference

• When we initially considered the topic of SLR Assessment, we started with: 

 After we have derived the OLS parameter estimates, 0β̂  and 1̂β , the question always 
arises:  How well did we do?  How close are the estimated coefficients to the true 
parameters, 0β  and 1β ?  We'll have several answers.  None will be entirely 
satisfactory… though they will be informative, nonetheless.  

• We then discussed two approaches to SLR Assessment: 

 Goodness-of-Fit metrics (MSE/RMSE and 2R ), which measured the extent to which our 
model explained the variation in the dependent variable, and 

 Precision/Inference metrics, which measured the precision with which we had estimated 
the unknown parameter values, 0β  and 1β . 

• At that time there was extensive discussion of Goodness-of-Fit metrics (SLR Assessment 
I)….  but we totally punted on precision/inference. 

• But we punt no more!  

 … and now turn to the second approach to SLR Assessment:  Precision/Inference 2



Samples Means and Inference:  Review

• Recall from the Review of Inference and the case of estimating the mean of the distribution: 

 Under certain assumptions (including homoskedasticity) we found that the Sample Mean 
was a BLUE estimator of the unknown mean. 

 To generate confidence intervals or perform hypothesis testing, we made distributional 
assumptions, and assumed a Normal distribution. 

 Under those assumptions: 

• Confidence Intervals:  Interval estimators…  Sample Mean +/- c Standard Errors 
(the critical value c comes from a t distribution with n-1 degrees of freedom) 

• Hypothesis Testing:  We reject the Null hypothesis ( 0 : 0H µ = ) at significance level 
α only if the reported p value is less than α  (or if the t stat c> , the critical value) 

• These results carry over to the SLR models, virtually unchanged … just replace ( 1)n −  with 
( 2)n − . 
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Recall those SLR Assumptions/Conditions

• SLR.1 – Linear model (the true model/DGM is in fact linear):  0 1Y X Uβ β= + +   

• SLR.2 – Random sampling:  the sample { }( , )i ix y is a random sample 

• SLR.3 – Sample variation in the independent variable:  the 'ix s  are not all the same 

• SLR.4 – Zero conditional mean of the error term:  ( | ) 0E U X x= =  for all x 

• SLR.5 – Homoskedasticity (constant conditional variance of the error term):  
2( | )Var U X x σ= =  for all x 

SLR.1-.4:  OLS = LUE 
+ SLR.5:  OLS = BLUE 
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Under those Assumptions/Conditions…
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• LUEs.  Given SLR.1 – SLR.4, the OLS estimators are LUE's of the true parameters of the 
DGM, 0β  and 1β , so that ( )0 0E B β=  and ( )1 1E B β= , where: 

 1 2 2

( )( ) ( )
( ) ( )
i i i iXY

j XX j

X X Y Y X X YSB
X X S X X
− − −

= = =
− −

∑ ∑
∑ ∑

 and, 

 0 1B Y B X= − . 

• MSE and BLUE.  Adding in SLR.5 we have: 

 2ˆ
2

SSRMSE
n

σ = =
−

 is an unbiased estimator of 2σ  , the conditional variance of U,  

 2( )i

MSE
x x−∑

 is an unbiased estimator of 1( )Var B , and most importantly,  

 OLS estimators are BLUE estimators (Best Linear Unbiased Estimators of 0β  and 1β ).  
This last result is the Gauss-Markov Theorem. 



SLR.6: U has a Normal Distribution

• Inference requires that we make one additional SLR assumption:  Normal Distribution 

• SLR.6 – Normality:  U is independent of the RHS variable X and is Normally distributed 
with mean 0 and variance 2σ . 

• Note that SLR.6 requires more than SLR.4 (U has 
conditional mean 0) and SLR.5 
(homoskedasticity)… since it now specifies the 
actual distribution of U, not just its mean and 
variance. 

• Recall that the Population Regression Function 
(PRF) is defined by: 0 1( | )E Y X x xβ β= = +  .   

• SLR.6 implies that we know the actual the 
conditional distribution of Y (given X x= ):   ( )2

0 1| ,Y X x Normal xβ β σ= +  
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Distribution of the OLS Estimators (given SLR.1-SLR.6)

• Given SLR.1-SLR.6, and conditional on the sample values of the x’s, the OLS estimators 
will be Normally distributed: 

( )1 1 1, ( )B Normal Var Bβ , where 
2

1 2( )
( )i

Var B
x x
σ

=
−∑

. 

• We can standardize 1B  , so that:  ( )1 1

1

0,1
( )

B
Normal

sd B
β−
 , where 1 2

( )
( )i
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x x
σ

=
−∑

. 

• Given SLR.1-SLR.5, and conditional on the x's, we have unbiased estimators of variances:   

2( )E MSE σ= , and ( )12( )i

MSEE Var B
x x

 
=  − ∑

  

• … and so we use the standard error of 1B , 1( )se B  to estimate 1( )sd B :  
2

1 2
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x x
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=
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 2 2( ) ( 1)( )i xi

MSE RMSE RMSE
x x S nx x
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− −−∑ ∑
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Some Intuition? Why variance in the x’s matters for std errs

• Some intuition, maybe:  SLR.5 keeps the conditional variances constant.  And so, as the x's 
are more spread out, there's less of a possible variation in the slopes.   

 On the left:  close x's and lots of variation in the possible slopes (std err = .0243) 

 On the right:  x's farther apart, and less variation in the possible slopes (std err = .0049) 8



The t Statistic, t Distribution and Confidence Intervals

• Recall the t statistic 1 1

1( )
B
se B

β−
 … the Cornerstone of Inference… which enables us to: 

 to develop confidence intervals for 1β , and  

 to test hypotheses about 1β . 

• Under the SLR.1 - SLR.6, the t statistic 1 1

1( )
B
se B

β−
  will have a t distribution with n-2 dofs. 

… and Confidence Intervals 

• Since 1 1
2

1( ) n
B

t
se B

β
−

−
  , the interval estimator, [ ]1 1 1 1( ), ( )B c se B B c se B− ⋅ + ⋅   

will form, say, a 95% confidence interval for 1β  if c is defined by: ( )2 .95nP t c− ≤ = .  (where 

2nt −  has a t distribution with (n-2) degrees of freedom). 
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SLR Inference:  Hypothesis Testing

• The Null Hypothesis:  0 1: 0H β =  (the most common Null Hypothesis in econometrics) 

 the t statistic (or t stat) under 0H :  1 1

1 1

0
( ) ( )

B Bt stat
se B se B

−
= =  

(the slope estimator divided by its standard error) 

 t stats can be positive or negative, and will always have the same sign as the 1̂β  (since 
standard errors are always positive) 

• The Hypothesis Test:  To conduct the test at, say, the 5% significance level:   

 Critical Value:  determine the critical value c defined by 2( ) .05nP t c− > =  

(the two-tailed probability will be 5%) 

 Critical Region:  Reject 0 1: 0H β =  if 1

1

ˆ
ˆ( )

t stat c
se
β
β

= >  (two-tailed test) 
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p values:  Hypothesis tests the easy way 
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 The Null Hypothesis:  0 1: 0H β =  

 The Test I: Critical Value, c, defined by the significance level, α , and 2nt −  

a) Reject 0 1: 0H β =  if 1

1

ˆ
ˆ( )

t stat c
se
β
β

= > ; c is defined by 2( )nP t c α− > =  

 The p value: p value = ( )2nP t t stat− > , where 2nt −  is a random variable with a t 
distribution with (n-2) degrees of freedom 

a) The p value is just the probability in the tails (of the 2nt −  distribution) outside tstat± . 

 The Test II:  p Value 

a) Reject 0 1: 0H β =  if ( )2nP t t stat p α− > = < , if the p-value is smaller than the 
significance level, α   

b) As in the case of the inference and the Sample Mean, you can reject the Null Hypothesis 
at all significance levels above the p value, but not at significance levels below the p 
value. 



Convergence:  SLR Assessment I & II
Who saw this coming?
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• Goodness-of-Fit and Precision/Inference metrics converge in SLR models: 

 
1

2
2
ˆ 2( 2) ( 2)

1
R SSEt n n

SSRRβ
= − = −

−
 

• This expression is increasing in n and 2R , and so you hope that both n and 2R  are large.  

• Since SSE SSR SST+ =  , the t stat reflects the division of SSTs between SSEs and SSRs…  

since 
1

2
ˆt
β

 is proportional to SSE
SSR

, for given n.   

• The higher the SSE/SSR  ratio, the greater the magnitude of the t stat.  



An Example:  Bodyfat

    Variable |        Obs        Mean    Std. Dev.       Min        Max 
-------------+--------------------------------------------------------- 
      Brozek |        252    18.93849    7.750856          0       45.1 
         hgt |        252    70.14881    3.662856       29.5      77.75 
 
. corr Brozek hgt 
 
             |   Brozek      hgt 
-------------+------------------ 
      Brozek |   1.0000 
         hgt |  -0.0891   1.0000 
 
. corr Brozek hgt, covar 
 
             |   Brozek      hgt 
-------------+------------------ 
      Brozek |  60.0758 
         hgt | -2.52975  13.4165 
 
. reg Brozek hgt 
 
      Source |       SS           df       MS      Number of obs   =       252 
-------------+----------------------------------   F(1, 250)       =      2.00 
       Model |  119.726679         1  119.726679   Prob > F        =    0.1585 
    Residual |  14959.2899       250  59.8371598   R-squared       =    0.0079 
-------------+----------------------------------   Adj R-squared   =    0.0040 
       Total |  15079.0166       251  60.0757635   Root MSE        =    7.7354 
 
------------------------------------------------------------------------------ 
      Brozek |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         hgt |  -.1885553   .1332996    -1.41   0.158    -.4510886     .073978 
       _cons |   32.16542   9.363495     3.44   0.001     13.72403    50.60681 
------------------------------------------------------------------------------ 13
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• 1

1

.1886  1.41
.133

.
.) 3

ˆ
ˆ .(

Coeft
Std Errse

β
β

−
−= = =  

• ( )250 0.15| | ( ) : 8P t p value P t t stat> > =  

• [95% Conf. Interval]: [ ] ( ). . . [ .1886 1.97 .1333  ]Coef c Std Err − ±± ⋅ =  

.4511, .0 0[ 74 ]= −  where 1.97c =  and  ( ) ( )250 250 1.97 .95P t c P t≤ = ≤ =  

• The hgt coefficient is statistically significant at the 15.9% level, but not at the 
15% level, or any smaller level of statistical significance. 

• Connecting t stats and R2:  The reported t stat for the hgt variable is -1.41. 

 
1

2
2
ˆ 2

.0079( 2) 250 1.99
1 .9921

Rt n
Rβ

= − = =
−

… and so
1̂

1.99 1.41t
β
= =  

 
1

2
ˆ

119.727( 2) 250 2.00
14,959

SSEt n
SSRβ

= − = = … and so
1̂

2.00 1.41t
β
= =  



Onwards to MLR Estimation and Inference
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