SLR Models: Inference

- SLR Assessment II: Precision/Inference
- Sample Means and Inference: Conceptual Review
- Onwards to SLR Inference
- ... SLR.6: U has a Normal Distribution
- Distribution of the OLS Estimators (given SLR.1-SLR.6)
- ... Standard Errors and t Stats
- t Statistics and Inference
- ... Confidence Intervals
- ... Hypothesis Testing
- ... p values and Statistical Significance
- SLR Assessment Metrics Converge: t Stats and R²
- Example: Bodyfat

SLR Assessment II: Precision/Inference

- When we initially considered the topic of SLR Assessment, we started with:
 - After we have derived the OLS parameter estimates, $\hat{\beta}_0$ and $\hat{\beta}_1$, the question always arises: How well did we do? How close are the estimated coefficients to the true parameters, β_0 and β_1 ? We'll have several answers. None will be entirely satisfactory... though they will be informative, nonetheless.
- We then discussed two approaches to SLR Assessment:
 - *Goodness-of-Fit* metrics (MSE/RMSE and R^2), which measured the extent to which our model explained the variation in the dependent variable, and
 - **Precision/Inference** metrics, which measured the precision with which we had estimated the unknown parameter values, β_0 and β_1 .
- At that time there was extensive discussion of Goodness-of-Fit metrics (SLR Assessment I).... but we totally punted on precision/inference.
- But we punt no more!
 - ... and now turn to the second approach to SLR Assessment: Precision/Inference

2

Samples Means and Inference: Review

- Recall from the *Review of Inference* and the case of estimating the mean of the distribution:
 - Under certain assumptions (including homoskedasticity) we found that the Sample Mean was a *BLUE* estimator of the unknown mean.
 - To generate confidence intervals or perform hypothesis testing, we made distributional assumptions, and assumed a Normal distribution.
 - Under those assumptions:
 - *Confidence Intervals*: Interval estimators... *Sample Mean* +/- *c Standard Errors* (the critical value c comes from a t distribution with n-1 degrees of freedom)
 - *Hypothesis Testing*: We reject the Null hypothesis $(H_0 : \mu = 0)$ at significance level α only if the reported *p* value is less than α (or if the $|t \ stat| > c$, the critical value)
- These results carry over to the SLR models, virtually unchanged ... just replace (n-1) with (n-2).

Recall those SLR Assumptions/Conditions

- **SLR.1** *Linear model* (the true model/DGM is in fact linear): $Y = \beta_0 + \beta_1 X + U$
- **SLR.2** *Random sampling*: the sample $\{(x_i, y_i)\}$ is a random sample
- **SLR.3** *Sample variation in the independent variable*: the x_i 's are not all the same
- **SLR.4** *Zero conditional mean of the error term*: E(U | X = x) = 0 for all x
- SLR.5 *Homoskedasticity* (constant conditional variance of the error term): $Var(U \mid X = x) = \sigma^2$ for all x

SLR.1-.4: OLS = LUE + SLR.5: OLS = *BLUE*

Under those Assumptions/Conditions...

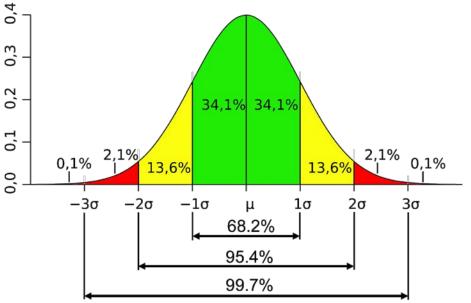
LUEs. Given SLR.1 – SLR.4, the OLS estimators are *LUE's* of the true parameters of the \bullet DGM, β_0 and β_1 , so that $E(B_0) = \beta_0$ and $E(B_1) = \beta_1$, where:

•
$$B_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_j - \overline{X})^2} = \frac{S_{XY}}{S_{XX}} = \frac{\sum (X_i - \overline{X})Y_i}{\sum (X_j - \overline{X})^2}$$
 and,
• $B_0 = \overline{Y} - B_1 \overline{X}$.

- *MSE and BLUE*. Adding in SLR.5 we have: \bullet
 - $\hat{\sigma}^2 = MSE = \frac{SSR}{n-2}$ is an unbiased estimator of σ^2 , the conditional variance of U,
 - $\frac{MSE}{\sum_{i}(x_i \overline{x})^2}$ is an unbiased estimator of $Var(B_1)$, and most importantly,
 - OLS estimators are **BLUE** estimators (**Best Linear Unbiased Estimators** of β_0 and β_1). This last result is the **Gauss-Markov Theorem**. 5

SLR.6: U has a Normal Distribution

- Inference requires that we make one additional SLR assumption: *Normal Distribution*
- SLR.6 *Normality*: U is independent of the RHS variable X and is Normally distributed with mean 0 and variance σ^2 .
- Note that SLR.6 requires more than SLR.4 (U has conditional mean 0) and SLR.5 (homoskedasticity)... since it now specifies the actual distribution of U, not just its mean and variance.
- Recall that the Population Regression Function (PRF) is defined by: $E(Y | X = x) = \beta_0 + \beta_1 x$.
- SLR.6 implies that we know the actual the conditional <u>distribution</u> of Y (given X = x): $Y | X = x \sim Normal(\beta_0 + \beta_1 x, \sigma^2)$



Distribution of the OLS Estimators (given SLR.1-SLR.6)

• Given SLR.1-SLR.6, and conditional on the sample values of the x's, the OLS estimators will be Normally distributed:

$$B_1 \sim Normal(\beta_1, Var(B_1))$$
, where $Var(B_1) = \frac{\sigma^2}{\sum (x_i - \overline{x})^2}$.

• We can standardize
$$B_1$$
, so that: $\frac{B_1 - \beta_1}{sd(B_1)} \sim Normal(0,1)$, where $sd(B_1) = \frac{\sigma}{\sqrt{\sum (x_i - \overline{x})^2}}$.

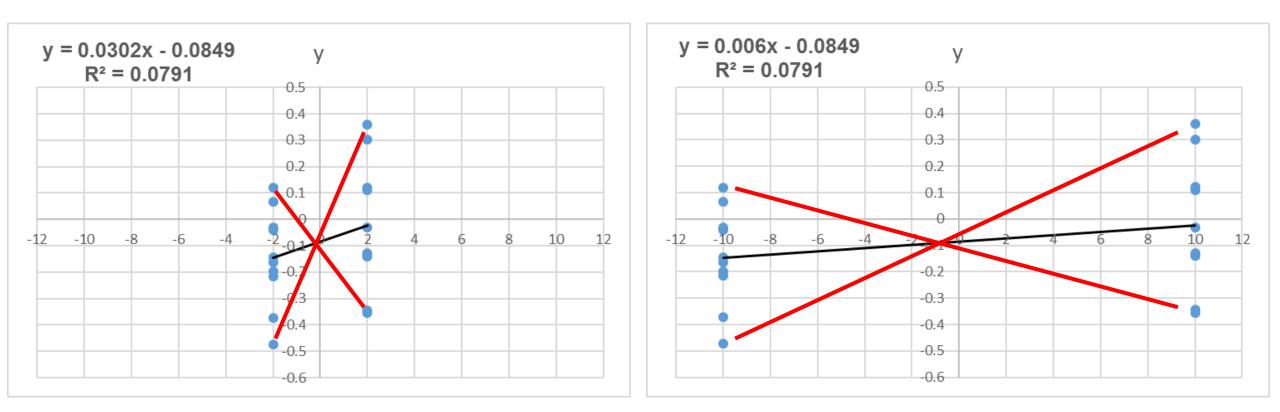
• Given SLR.1-SLR.5, and conditional on the x's, we have unbiased estimators of variances:

$$E(MSE) = \sigma^2$$
, and $E\left(\frac{MSE}{\sum (x_i - \overline{x})^2}\right) = Var(B_1)$

• ... and so we use the standard error of B_1 , $se(B_1)$ to estimate $sd(B_1)$:

$$se(B_1) = \sqrt{\frac{\hat{\sigma}^2}{\sum (x_i - \overline{x})^2}} = \sqrt{\frac{MSE}{\sum (x_i - \overline{x})^2}} = \frac{RMSE}{\sqrt{\sum (x_i - \overline{x})^2}} = \frac{RMSE}{S_x\sqrt{(n-1)}}$$

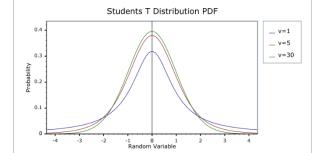
Some Intuition? Why variance in the x's matters for std errs



- *Some intuition, maybe*: SLR.5 keeps the conditional variances constant. And so, as the x's are more spread out, there's less of a possible variation in the slopes.
 - On the left: close x's and lots of variation in the possible slopes (std err = .0243)
 - On the right: x's farther apart, and less variation in the possible slopes (std err = .0049) ⁸

The t Statistic, t Distribution and Confidence Intervals

- Recall the *t* statistic $\frac{B_1 \beta_1}{se(B_1)}$... the *Cornerstone of Inference*... which enables us to:
 - to develop confidence intervals for β_1 , and
 - to test hypotheses about β_1 .



• Under the SLR.1 - SLR.6, the *t* statistic $\frac{B_1 - \beta_1}{se(B_1)}$ will have a t distribution with n-2 dofs.

... and Confidence Intervals

• Since
$$\frac{B_1 - \beta_1}{se(B_1)} \sim t_{n-2}$$
, the interval estimator, $[B_1 - c \cdot se(B_1), B_1 + c \cdot se(B_1)]$

will form, say, a 95% confidence interval for β_1 if c is defined by: $P(|t_{n-2}| \le c) = .95$. (where t_{n-2} has a t distribution with (n-2) degrees of freedom).

SLR Inference: Hypothesis Testing

Fail to Reject

the Null Hypothesis

Reject

Critical Value 10

(+)

Reject

Critical

Value (-)

• *The Null Hypothesis*: $H_0: \beta_1 = 0$ (the most common Null Hypothesis in econometrics)

• the t statistic (or *t* stat) under
$$H_0$$
: t stat = $\frac{B_1 - 0}{se(B_1)} = \frac{B_1}{se(B_1)}$

(the slope estimator divided by its standard error)

- t stats can be positive or negative, and will always have the same sign as the $\hat{\beta}_1$ (since standard errors are always positive)
- *The Hypothesis Test*: To conduct the test at, say, the 5% significance level:
 - *Critical Value*: determine the critical value c defined by $P(|t_{n-2}| > c) = .05$ (the *two-tailed* probability will be 5%)

• Critical Region: Reject
$$H_0: \beta_1 = 0$$
 if $|t \ stat| = \left|\frac{\hat{\beta}_1}{se(\hat{\beta}_1)}\right| > c$ (two-tailed test)

p values: Hypothesis tests the easy way

- The Null Hypothesis: $H_0: \beta_1 = 0$
- The Test I: Critical Value, c, defined by the significance level, α , and t_{n-2}

a) Reject
$$H_0: \beta_1 = 0$$
 if $|t \ stat| = \left|\frac{\hat{\beta}_1}{se(\hat{\beta}_1)}\right| > c$; c is defined by $P(|t_{n-2}| > c) = \alpha$

- *The p value*: $p \text{ value} = P(|t_{n-2}| > |t \text{ stat}|)$, where t_{n-2} is a random variable with a t distribution with (n-2) degrees of freedom
 - a) The p value is just the probability in the tails (of the t_{n-2} distribution) outside $\pm tstat$.
- The Test II: p Value

appiness

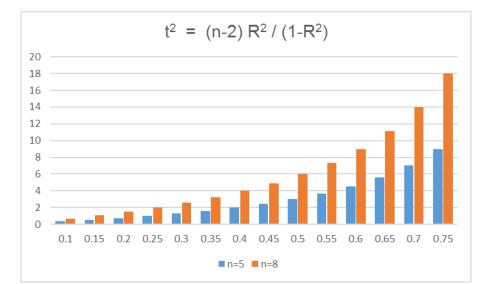
- a) Reject $H_0: \beta_1 = 0$ if $P(|t_{n-2}| > |t \ stat|) = p < \alpha$, if the p-value is smaller than the significance level, α
- b) As in the case of the inference and the Sample Mean, you can reject the Null Hypothesis at all significance levels above the *p value*, but not at significance levels below the *p value*.

Convergence: SLR Assessment I & II Who saw this coming?

• Goodness-of-Fit and Precision/Inference metrics converge in SLR models:

•
$$t_{\hat{\beta}_1}^2 = (n-2)\frac{R^2}{1-R^2} = (n-2)\frac{SSE}{SSR}$$

- This expression is increasing in n and R^2 , and so you hope that both n and R^2 are large.
- Since SSE + SSR = SST, the t stat reflects the division of SSTs between SSEs and SSRs... since $t_{\hat{\beta}_1}^2$ is proportional to $\frac{SSE}{SSR}$, for given n.
- The higher the SSE/SSR ratio, the greater the magnitude of the t stat.



An Example: Bodyfat

Variable	Obs	Mean	Std. Dev.	Min	Max	
Brozek hgt		18.93849 70.14881	7.750856 3.662856		45.1 77.75	
. corr Brozek	hgt					
	Brozek	hgt				
Brozek hgt		.0000				
. corr Brozek hgt, covar						
	Brozek	hgt 				
Brozek hgt		.4165				
. reg Brozek hgt						
Source	SS	df		Number of obs F(1, 250)		
Model Residual	119.726679 14959.2899		119.726679 59.8371598	Prob > F R-squared	= =	0.0079
Total	15079.0166	251		Adj R-squared Root MSE		0.0040 7.7354
Brozek	Coef.	Std. Err.	t P>	t [95% (Conf. Int	erval]
hgt				15845108		073978
_cons	32.16542	9.363495	3.44 0.	001 13.724	103 50	.60681

•
$$Coef. = \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{-2.53}{13.42} = \rho_{xy} \frac{S_y}{S_x} = -.0891 \left(\frac{7.75}{3.66}\right) - .1885553$$

• $Std.Err. = se(\hat{\beta}_1) = \frac{RMSE}{\sqrt{\sum_i (x_i - \overline{x})^2}} = \frac{RMSE}{S_x\sqrt{n-1}} = \frac{7.7354}{3.66\sqrt{251}} = .1332996$

•
$$t = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} = \frac{Coef.}{Std. Err.} = \frac{-.1886}{.1333} - 1.41$$

- $P > |t| (p value) : P(|t_{250}| > |t stat|) = 0.158$
- [95% Conf. Interval]: $[Coef. \pm c \cdot Std. Err.] = [-.1886 \pm 1.97(.1333)]$ = [-.4511, .0740] where c = 1.97 and $P(|t_{250}| \le c) = P(|t_{250}| \le 1.97) = .95$
- The hgt coefficient is statistically significant at the 15.9% level, but not at the ٠ 15% level, or any smaller level of statistical significance.
- Connecting t stats and R^2 : The reported t stat for the *hgt* variable is -1.41. •

•
$$t_{\hat{\beta}_1}^2 = (n-2)\frac{R^2}{1-R^2} = 250\frac{.0079}{.9921} = 1.99\dots$$
 and so $\left|t_{\hat{\beta}_1}\right| = \sqrt{1.99} = 1.41$
• $t_{\hat{\beta}_1}^2 = (n-2)\frac{SSE}{SSR} = 250\frac{119.727}{14,959} = 2.00\dots$ and so $\left|t_{\hat{\beta}_1}\right| = \sqrt{2.00} = 1.41$

Onwards to MLR Estimation and Inference