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@ SLR Assessment Il: Precision/Inference

When we initially considered the topic of SLR Assessment, we started with:

«  After we have derived the OLS parameter estimates, ,30 and ,@1, the question always

arises: How well did we do? How close are the estimated coefficients to the true
parameters, 3, and £,? We'll have several answers. None will be entirely

satisfactory... though they will be informative, nonetheless.

We then discussed two approaches to SLR Assessment:

- Goodness-of-Fit metrics (MSE/RMSE and R*), which measured the extent to which our
model explained the variation in the dependent variable, and

= Precision/Inference metrics, which measured the precision with which we had estimated
the unknown parameter values, £, and f,.

At that time there was extensive discussion of Goodness-of-Fit metrics (SLR Assessment
[).... but we totally punted on precision/inference.

But we punt no more!

= ... and now turn to the second approach to SLR Assessment: Precision/Inference



Samples Means and Inference: Review

e Recall from the Review of Inference and the case of estimating the mean of the distribution:

= Under certain assumptions (including homoskedasticity) we found that the Sample Mean
was a BLUE estimator of the unknown mean.

= To generate confidence intervals or perform hypothesis testing, we made distributional
assumptions, and assumed a Normal distribution.

= Under those assumptions:

e Confidence Intervals: Interval estimators... Sample Mean +/- ¢ Standard Errors
(the critical value c comes from a t distribution with n-1 degrees of freedom)

o Hypothesis Testing: We reject the Null hypothesis (H, : # = 0) at significance level
a only if the reported p value is less than o (or if the |t stat| > C, the critical value)

e These results carry over to the SLR models, virtually unchanged ... just replace (n—1) with
(n-2).



Recall those SLR Assumptions/Conditions

SLR.1 - Linear model (the true model/DGM is in fact linear): Y = g, + B X +U
SLR.2 — Random sampling: the sample {(xi , yi)} IS a random sample

SLR.3 — Sample variation in the independent variable: the x.'s are not all the same

SLR.4 — Zero conditional mean of the error term: E(U | X = x) =0 for all x

SLR.5 — Homoskedasticity (constant conditional variance of the error term):
Var(U | X = x) = o* forall x

SLR.1-.4: OLS =LUE
+ SLR.5: OLS =BLUE



Under those Assumptions/Conditions...

LUEs. Given SLR.1 - SLR.4, the OLS estimators are LUE's of the true parameters of the
DGM, g, and g, so that E(B,)= /3, and E(B,)= /3, where:

L 2 =X0-Y) s, P X =X)Y
COXGXY s XXX

. B, -Y-BX.

and,

MSE and BLUE. Adding in SLR.5 we have:

« 6°=MSE = il:; is an unbiased estimator of o , the conditional variance of U,
n —

IS an unbiased estimator of Var(B,), and most importantly,

MSE
Z(Xi o Y)Z
= OLS estimators are BLUE estimators (Best Linear Unbiased Estimators of £, and £,).
This last result is the Gauss-Markov Theorem.



SLR.6: U has a Normal Distribution

Inference requires that we make one additional SLR assumption: Normal Distribution
SLR.6 — Normality: U is independent of the RHS variable X and is Normally distributed

with mean 0 and variance o°.

Note that SLR.6 requires more than SLR.4 (U has
34,1%| 34,1%

conditional mean 0) and SLR.5
(homoskedasticity)... since it now specifies the
actual distribution of U, not just its mean and
variance.

|
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Recall that the Population Regression Function
(PRF) is defined by: E(Y | X =X) =S, + B.X .

SLR.6 implies that we know the actual the
conditional distribution of Y (given X =x): Y | X =x~ Normal (,6’0 +,le,02)




Distribution of the OLS Estimators (given SLR.1-SLR.6)

Given SLR.1-SLR.6, and conditional on the sample values of the x’s, the OLS estimators
will be Normally distributed:

2

o)
B, ~ Normal (,,Var(B,)), where Var(B,) = SR
: . B.-f o
We can standardize B, , so that: ——= ~ Normal (0,1), where sd(B,) = .
sd(B,) V2 (% —%)°

Given SLR.1-SLR.5, and conditional on the x's, we have unbiased estimators of variances:

E(MSE) =&, and E[Z(I\QS—EX)Z j =Var(B,)

.. and so we use the standard error of B, se(B,) to estimate sd(B,) :
G - \/ MSE RMSE RMSE

Se(Bl) = \/Z (Xi _ 7)2

S0 -XF S -x S0




Some Intuition? Why variance in the x’s matters for std errs

y = 0.0302x - 0.0849 y y =0.006x - 0.0849 y
R2 = 0.0791 R?=0.0791
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e Some intuition, maybe: SLR.5 keeps the conditional variances constant. And so, as the x's
are more spread out, there's less of a possible variation in the slopes.

On the left: close x's and lots of variation in the possible slopes (std err = .0243)
On the right: x's farther apart, and less variation in the possible slopes (std err =.0049) =



The t Statistic, t Distribution and Confidence Intervals

Bl _181

se(B,)

e Recall the t statistic ... the Cornerstone of Inference... which enables us to:

= to develop confidence intervals for £, and

- to test hypotheses about f3,. - / \
o B . - - - - /:i- B i erat 1T
e Under the SLR.1 - SLR.6, the t statistic — (B’B)l will have a t distribution with n-2 dofs.
se(B,
... and Confidence Intervals
B -4 . .
e Since (B) ~1,, , the interval estimator, [B, —c-se(B,), B, +c-se(B,)]
se(B,

will form, say, a 95% confidence interval for g, if c is defined by: P(\tn_z\ < c) =.95. (where

t , has atdistribution with (n-2) degrees of freedom).



SLR Inference: Hypothesis Testing

e The Null Hypothesis: H, : £, =0 (the most common Null Hypothesis in econometrics)

B-0 B
se(B,)  se(B,)

(the slope estimator divided by its standard error)

= the t statistic (or t stat) under H,: tstat =

= tstats can be positive or negative, and will always have the same sign as the ,31 (since
standard errors are always positive)

e The Hypothesis Test: To conduct the test at, say, the 5% significance level:

- Critical Value: determine the critical value ¢ defined by P([t,,|>c)=.05

Fail to Reject
the Null
Hypothesis

(the two-tailed probability will be 5%)

~

by

~

se(4,)

- Critical Region: Reject H,: 4, =0 if |t stat| = > ¢ (two-tailed test)

Critical Critical
Value Value 10
(-) (+)
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p values:. Hypothesis tests the easy way

The Null Hypothesis: H,: g, =0

The Test I: Critical Value, c, defined by the significance level, «,and t_,

~

b

~

se(4,)

), where t,_, is a random variable with a t

a) Reject H,: B =0 if |t stat| = > c; ¢ is defined by P(t, ,|>c) =«

The p value: p value = P([t, ,| > |t stat

distribution with (n-2) degrees of freedom

a) The p value is just the probability in the tails (of the t__, distribution) outside +tstat .
The Test I1: p Value

a) Reject H,: 3 =0 if P(|t,_,|>|t stat|)= p<e, if the p-value is smaller than the
significance level, o

b) As in the case of the inference and the Sample Mean, you can reject the Null Hypothesis
at all significance levels above the p value, but not at significance levels below the p
value.



Convergence: SLR Assessment | & |
Who saw this coming?

Goodness-of-Fit and Precision/Inference metrics converge in SLR models:

R’ SSE
=(n-2)>=
Rt - g

This expression is increasing in n and R?, and so you hope that both n and R? are large.

. tgl =(n-2)

Since SSE + SSR = SST |, the t stat reflects the division of SSTs between SSEs and SSRs...

since t> is proportional to SSE for given n
A SSR '

The higher the SSE/SSR ratio, the greater the magnitude of the t stat.

£ = (n-2) R2/ (1-R2)
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An Example: Bodyfat

Variable | Obs Mean Std. Dev. Min Max
_____________ e
Brozek | 252 18.93849 7.750856 0 45.1
hgt | 252 70.14881 3.662856 29.5 77.75
. corr Brozek hgt
| Brozek hgt
_____________ S
Brozek | 1.0000
hgt | -0.0891 1.0000
. corr Brozek hgt, covar
| Brozek hgt
_____________ R
Brozek | 60.0758
hgt | -2.52975 13.4165
. reg Brozek hgt
Source | SS df MS Number of obs = 252
————————————— -~ F(1, 250) = 2.00
Model | 119.726679 1 119.726679 Prob > F = 0.1585
Residual | 14959.2899 250 59.8371598 R-squared = 0.0079
————————————— - - Adj R-squared = 0.0040
Total | 15079.0166 251 60.0757635 Root MSE = 7.7354
Brozek | Coef Std. Err t P>]t] [95% Conf. Interval]
_____________ e
hgt | -.1885553 -1332996 -1.41 0.158 -.4510886 .073978
cons | 32.16542  9.363495 3.44 0.001 13.72403 50.60681

~ S _
Coef .= g, = -2 _ 298 pxy—y:—.0891(ﬂj—.1885553
s, 1342 S, 3.66
Std.Err. = se(,) = RMSE _ _RMSE _ 77354 _ 1335996
S (x-x)° S,Jn-1 3661251
f,  Coef. —1886

-1.41

“se(B) Std.Err. 1333
P >|t|(p value): P ([t,| > [t stat|) =0.158

[95% Conf. Interval]: [Coef.+c-Std. Err.]=[-.1886 £1.97(.1333) ]
= [-.4511,.0740] wherec =1.97 and P ([t,s|<c)=P(t,s|<1.97)=.95

The hgt coefficient is statistically significant at the 15.9% level, but not at the
15% level, or any smaller level of statistical significance.

Connecting t stats and R%: The reported t stat for the hgt variable is -1.41.

2
. t=(n-2) R =250%:1.99...andso‘t/}l‘:\/l.99:1.41

1-R? 9921
SSE 119.727
- 2 =(n=2)2>E _ 250 ~2.00... and so‘tA‘:\/Z.OO:lAl
5= (1=25p 14,959 A



Onwards to MLR Estimation and Inference
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